Cartilage stresses in the human hip joint.

نویسندگان

  • T Macirowski
  • S Tepic
  • R W Mann
چکیده

The total surface stress measured in vitro on acetabular cartilage when step-loaded by an instrumented hemiprosthesis are partitioned into fluid and cartilage network stresses using a finite element model of the cartilage layer and measurements of the layer consolidation. The finite element model is based on in situ measurements of cartilage geometry and constitutive properties. Unique instrumentation was employed to collect the geometry and constitutive properties and pressure and consolidation data. When loaded, cartilage consolidates and exudes its interstitial fluid through and from its solid network into the inter-articular gap. The finite element solutions include the spatial distributions of fluid and network stresses, the normal flow velocities into the gap, and the contact network stresses at the cartilage surface, all versus time. Even after long-duration application of physiological-level force, fluid pressure supports 90 percent of the load with the cartilage network stresses remaining well below the drained modulus of cartilage. The results support the "weeping" mechanism of joint lubrication proposed by McCutchen.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Histomorphological Evaluation of Transcutaneous Electrical Neural Stimulation in Healing of Experimentally Induced Partial Hip Joint Cartilage Defect in Rabbit

Objective- To determine the effect of the transcutaneous electrical neural stimulation on healing of hip joint cartilage defect in rabbit.Design- Experimental in vivo study.Animals- 12 adult New Zealand rabbits were used.Procedures- Under effective the right femoral head was subluxated and the maximum accessible cartilage was denuded up to subchondral bone using dental bit in each rabbit. Then ...

متن کامل

A new discrete element analysis method for predicting hip joint contact stresses.

Quantifying cartilage contact stress is paramount to understanding hip osteoarthritis. Discrete element analysis (DEA) is a computationally efficient method to estimate cartilage contact stresses. Previous applications of DEA have underestimated cartilage stresses and yielded unrealistic contact patterns because they assumed constant cartilage thickness and/or concentric joint geometry. The stu...

متن کامل

پارامترهای آناتومیک مفصل هیپ و ارتباط آن‌ها با پارامترهای فیزیکی بدن

Background and Objective: Arthrosis of the hip joint is one of the most common complications of patients and many efforts have been made to find its etiology. One of the subjects important for researchers is morphologic parameters of the hip joint and its relationship with osteoarthritis of this joint. Since these parameters themselves are affected by physical parameters of the body and the rac...

متن کامل

The effects of impingement and dysplasia on stress distributions in the hip joint during sitting and walking: a finite element analysis.

Soft tissue damage has been observed in hip joints with pathological geometries. Our primary goal was to study the relationship between morphological variations of the bony components of the hip and resultant stresses within the soft tissues of the joint during routine daily activities. The secondary goal was to find the range of morphological parameters in which stresses are minimized. Computa...

متن کامل

Computational Modeling of Hip Joint Mechanics

The hip joint is one of the largest weight bearing structures in the human body. While its efficient structure may lend to a lifetime of mobility, abnormal, repetitive loading of the hip is thought to result in osteoarthritis (OA). The etiology of hip OA is unknown however, due to the high loads this joint supports, mechanics have been implicated as the primary factor. Quantifying the relevant ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomechanical engineering

دوره 116 1  شماره 

صفحات  -

تاریخ انتشار 1994